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1 The Autocorrelation Function

e Assuming weak stationarity, we can define the k-th order autocovariance,

/Vka as
Ve = cov{Yy, Y} = cov{Y;, Y}

e The autocovariance of a stochastic process can be standardized and presented
as an autocorrelation function (ACF), p,

o = coo{Y, Yir}
k=™ T xr(~-v _ — — -

V{Y:} Yo
The ACF helps characterize the development of Y; over time. It shows us how
strongly current observations are correlated with past observations and how
shocks today affect future values of the stochastic variable. Besides helping us

describe the data, the ACF will also help us find unit roots, choose models and
run regression diagnostics.

e The ACF of an AR(1) process is

CO’U{Y;,Y;,]C} _ H‘k—ﬂ%

P = = 0.
: V{Y:} e
e The ACF of an M A(1) process is
co{Yy, Yl a0«
TV Q+ad)e? 1+az

e In R you can graph the ACF of a variable, x, by writing: acf(x)
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x <- arima.sim(list(order=c(0,0,1), ar=0.90), n=200)
acf(x)
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The ACF of an AR(1) With 6 = 0.90.
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The ACF of an AR(1) Process With § = —0.90.
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The ACF of a MA(1) process with a = 0.90.
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The ACF of a MA(1) Process With o = —0.90.

e It is often times difficult to distinguish between different AR(q) processes based
solely on an examination of a correlogram.

2 The Partial Autocorrelation Function

e The partial autocorrelation function (PACF) may provide a more clear discrim-
ination.



e The J; parameter in an AR(2) process is the partial correlation coefficient be-
tween x; and z;_s holding x;_; constant.

e Recall the definition of a partial correlation coefficient in the 3 variable case.

713 — T'12723

\/1_7“%2\/1_7”53'

0o = T132 =

e Assuming weak stationarity

T2 = corr {xy, Tp1} = corr {Tp1, T2} = py

and
T3 = corr{Ty, Tr_o} = py.

Substituting this into the formula for

P2 — P1
0y =T132 = .
1—pf

e These can be graphed in R by writing: pacf(x)
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The PACF of an AR(1) Process With ¢ = 0.90.
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The PACF of an AR(1) Process With 6§ = —0.90.
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The PACF of a MA(1) Process With o = 0.90.
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The PACF of a MA(1) Process With a = —0.90.

3 Summary of Results
e An AR(p) process is described by:

1. an ACF that is infinite in extent (it tails off)
2. a PACF that is (close to) zero for lags larger than p.

e A M A(q) process is described by:

1. an ACF that is (close to) zero for lags larger than g.
2. a PACF that is infinite in extent (it tails off).

e Note that this "identification" strategy only works on stationary time series!
For example, if you have quarterly data that trends upwards, you must first
remove the seasonal pattern and then remove the long-run trend. After this is
done, you can use the acf and pacf functions to identify the de-trended variable.



