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1 Estimating ARIMA Models

The goal of ARIMA analysis is a parsimonious representation of the process governing
the residual. You should use only enough AR and MA terms to fit the properties of

the residuals correctly.

1.1 The Box-Jenkins Methodology

This methodology can be applied to stationary series only. So, you must first deal
with unit roots and stochastic seasons.

1. Identification

(a) Address seasonality, s
(b) Determine order of integration, d

(c¢) Find appropriate values of p and ¢

2. Estimation

(a) Pure AR(p) models can be estimated (consistently) using OLS, non-linear
OLS or maximum likelihood.

(b) Pure M A(gq) models can be estimated (consistently) using non-linear OLS
or maximum likelihood.

(c) ARIMA models, AR(p) models and M A(q) models can all be estimated
(consistently) using non-linear OLS and maximum likelihood.

i. The arima function in R uses maximum likelihood (see ?arima for
more info).
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note: Consistency is an asymptotic property (i.e., it hold for large samples). This
does not guarantee unbiasedness in small samples when estimating ARIMA
models! We will discuss this topic in more detail later.

1. Diagnostics

a) model specification

(a)
(b)
)
)

autocorrelations

arch

(c

(d) normality

e Example 1 US GDP
e In an earlier example I identified s =0,d =1, p =1 and ¢ = 0.

e Estimate an ARIMA(1,1,0) model for US GDP:

> arima(output, order = c(1, 1, 0))

Call:

arima(r = output, order = ¢(1, 1, 0))

Coefficients:

arl

0.7079

s.e. 0.1292

sigma "2 estimated as 15959: log likelihood = -181.82, aic = 367.65

e Alternatively, we could have estimated an AR(1) process for Aoutput using
OLS:

> arl <— lm(diff(output)[2:29] ~ diff(output)[1:28] -1)
> summary(arl)

Coeflicients: Estimate Std. Error t value Pr(>|t|)
diff(output)[1:28] 0.7140 0.1374 5.198 1.79e-05 ***

e Note how close the estimates of the AR(1) component are to each other; 0.7079
~ 0.7140.

e Estimate the ARIMA(1,1,0) x SAR(4) model for Swedish quarterly GDP:



> gdp <— ts(gdp, start = 1993, frequency = 4)
> arima(gdp, order = c(1, 1, 0), seasonal = list(order = ¢(0, 1, 0)))
Coeflicients: arl
-0.4860
s.e. 0.1453
sigma ™2 estimated as 4.361e-32: log likelihood = 1179.19, aic = -2354.38

e Alternatively we could estimate an AR(1) process for AA output using OLS:

> arls4 <— lm(diff(diff(gdp, 4))[2:34] ~ diff(diff(gdp,4))[1:33] -1)
Coeflicients: Estimate Std. Error t value Pr(>|t])
diff(diff(gdp, 4))[1:33]  -0.3446  0.1641 21 0.0437 *

1.1.1 Diagnostics

1. Are the residuals from our ARIMA model uncorrelated? Use the Ljung-Box
Portmannteau test.

(a) In R, use Box.test() in the package stats.

2. Are the residuals normally distributed? Use the Jarque-Bera test or the Shapiro-
Wilk test.

(a) In R, use jarque.bera.test() in the package tseries or use shapiro.test
in the package stats.

3. Test for ARCH and/or GARCH. More on this below

4. Over- and under-fitting a model. Use the AIC or BIC (reported by the arima
command) to test if the model would be better off with more or less AR lags
or with more or less MA lags.

Example 2 Applying the Box-Jenkins methodology to the US unemployment rate,
1909-1988.

## Pfaff’s (2008) example starting on p. 16.

#+4 Rcode 1.3

library(urca)

data(npext)

y <- ts(na.omit(npext$unemploy), start = 1909, end = 1988, frequency
— 1)

op <- par(no.readonly = TRUE)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))
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plot(y, ylab = "unemployment rate (logarithm)")
acf(y, main = "Autocorrelations", ylab = "", ylim = c(-1, 1))
pacf(y, main = "Partial Autocorrelations", ylab = "", ylim = c(-1, 1))

par(op)
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## Tentative ARMA(2,0)
arma20 <- arima(y, order = ¢(2,0,0))

arma20
C arl ar2
1.6988 0.9297 -0.2356
(0.1079) (0.1077) (0.1586)
aic = 105.18

res20 <- residuals(arma20)
#+# Diagnostics
tsdiag(arma20)



Standardized Residuals
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#+# Uncorrelatedness (at lag 20)

Box.test(res20, lag = 20, type = "Ljung-Box")
#+4 Normality

shapiro.test(res20)

#+# Underfitting

armal0 <- arima(y, order = c(1, 0,0))

armalO
C arl
1.6885 0.7500
(0.1965) (0.0719)

aic = 107.81

## Overfitting
arma30 <- arima(y, order =c(3, 0, 0))

arma30
C arl ar2 ar3
1.6863 0.9727 -0.3949 0.1669
(0.1851) (0.1101) (0.1495) (0.1103)

aic = 104.93

e Syntax for an ARIMA (p,d,q) x SAR(s) model: arima.season <- arima(x,
order = c(p, d, q), seasonal = list(order = c(p, s, q))



1.1.2 Using ARIMA Models to Make Forecasts

One of the main goals of building ARIMA models is to forecast, or, predict
future values of an economic variable. These forecasts are often used as bench-
marks for comparison when constructing new, more complicated forecasting
models.

Given the available information set Ir = {Y_o, ..., Y7}, the optimal predictor,
Yripr = E {YT+h|T | IT}, will be chosen so that it minimizes the expected
quadratic prediction error

—~ 2
min & { (YT+h - YT+h|T> | IT} :

Derive the optimal predictor for the following AR(1) process
Y; = (9}/;571 + &

Given this process, Yr.1 = 0Yr + €71 and the optimal, one-step-ahead pre-
dictor is given by

Yrogr = E{Yri1 | Yr, ... Yr_oo}
E{(0Yr +eri1) | Yoo oo, Yoo}
OYr + E{ers | Yo, o, Yr_oo}
— oy

Given this process, Yrio = 0Y711 4+ €749 and the optimal, two-step-ahead pre-
dictor is given by

Yrsor = E{Yrio| Yo, . Yoo}
= E{0Yri+erps | Yo, . Yoo}
= OE{Yrq | Y, ... Yo oo}
= OE{0Yr+ery | Yr, ... Yr o}
0% 0Yy = 6*Yy.

In general, the optimal predictor of an AR(1) process is
Yyinr = 0"Yr.
When the mean of the AR(1) process is not zero, i.e. when
Y, = pu+0Y 1 + ¢,
the optimal predictor is

Yrinr = p+ 0" (Yr — ).



e Derive the optimal predictor for the following M A(1) process

Y; =& + agy_1.

e Given this process, Y71 = €711 +aer and the optimal one-step-ahead predictor
is given by
Yrigr = E{Yrq | Yr, . Yr o}
E {5T+1 + aer | YT, ceey YT,OO}
aF {éTT ‘ YT, ceey YT—oo}

= QE&T.

e Given this process, Yr s = €719 + aery; and the optimal one-step-ahead pre-
dictor is given by
Yrior = E{Yryo | Yr, .., Y1 oo}
= FE{erjet+aerii | Yr, ... Yr_oo}
= aF {€T+1 | YT, ...,YT,OO} = 0.

1.1.3 Forecasting With R

e Return to the example above in which we examine the US unemployment rate,
1909 - 1988. Assume that our preferred model is arma20 <- arima(y, order
= ¢(2,0,0)).

e Now use this model to predict the unemployment rate 20 years forward in time:
arma20.predict <- predict(arma20, n.ahead = 20).

e Plot the result: ts.plot(y, arma20.predict$pred, lty = 1:2)
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e Now, let’s re-estimate the model and hold back the last 4 observations. Then
make a forecast for the last 4 years and compare the forecast to the actual data.

y2 <- ts(na.omit(npext$unemploy), start = 1909, end = 1984, fre-
quency = 1)

arma20b <- arima(y2, order = ¢(2,0,0))

arma20b.predict <- predict(arma20b, n.ahead = 4)

ts.plot(y, arma20b.predict$pred, lty = 1:2, lwd = 3)
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1.1.4 Forecast Error

e Let us examine the forecast error associated with a one-step ahead predictor of
Y; from the following , rather general model

Yr=0Xr+er
where T' =1, 2, 3,...t and where
er ~ IID N(0,0%).
e The one-step ahead predictor of Y; is
Yir = B' X1+ e
and our estimate of the one-step ahead predictor is

v /
Yipr = b X1



e The one-step ahead prediction error e, from this model can be calculated as
Cirir = Yir1— Y11 = (B — b)/XtJrl + €41

e The variance of the one-step ahead prediction error is

Var [€t+1|T] = Var [(ﬁ — b)/XHl} + Var [g441]

= Var l(ﬁ—b)’Xt+1l + 9L

error uncertainty

Vo
parameter estimate uncertainty

= X, [2(X5X) ] X + 0.

e The variance of the h-step ahead prediction error is

Var [€t+h\T] = Xé—f—h [0'2(X/TXT)71:| XtJrh -+ 0'2.

e In practice, one can compute
s [1+ X (X Xr) 7] K] -

e A third source of uncertainty arises when computing out of sample, dynamic
forecasts, since we are using the predicted values of X151, ..., X¢11in order to
predict X;.,. This type of uncertainty is usually to complicated to be dealt
with and disappears asymptotically.

e The forecast interval for ?t+h|T is given by SA(HMT + t)/25€(€4qnr) Where X is
the chosen level of significance.

Example: Derive a 95% confidence interval for the 3-step ahead predictor of the
following AR(1) process
Y, =0Y, 1 +¢

where 6 < |1| and where
e, ~ IID N(0,0?).

Ignore all parameter estimate uncertainty!

step 1: Derive the optimal 3-step ahead predictor. This was derived above. It is
equal to 6°Y;.

step 2: The 3-step ahead prediction error, e;;3;, is defined as

€143t = Yis — Y;-I—S\t-



step 3: The variance of e, 3); is equal to

Vi{ews) =V {Yi+3 — 3A/t+3\t} =V {0Yiy2 + €45 — 0°Y3}
=V {8 (0Yip1 +erq2) + €143 — 93Yt}
V{0(0(0Y; + er41) + Er40) + 143 — 0°Y;}
VA{0PY, + i1 + Ocpin + 143 — 0°Y;}
= V{0Peri1+ 02+ ezt =V {0} + V {lera} + {Vers}
= (1+6°+06%) 0%

step 4: The forecast interval for SA[H;),‘t is given by ?Hg‘t + t2,5\/(1 + 6% + 94) o2.
e Let’s now place a confidence interval around our forecast of US unemployment:

ts.plot(y, arma20b.predict$pred, arma20b.predict$pred
+ 1.96*arma20b.predict$se, arma20b.predict$pred
- 1.96*arma20b.predict$se, 1ty = 1:4, lwd = 3)
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1.1.5 Evaluating forecasts

Let’s compare the forecast from model A to that from model B.

e Regression method. Let T" = 150.
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1. Estimate each model using the first 100 observations only.

2. Calculate a one-step ahead forecast for each model, }/}101‘100@- where 7 €

{A, B}.
3. Estimate each model using the first 101 observations.

4. Calculate a one-step-ahead forecast for each model, }/}102‘101@- where 1 €
{A, B}..
5. Continue this until you have two series of 50 one-step-ahead forecasts,
Y 150 150
{YA} and {YB} .
101 101
6. Run the following test regressions
15
1

~ 0
Wahit = aa+Ba{Va}  +{eH

. 150
el = as+ 5 {Va}  +{)1.
7. If these forecasts are unbiased, we should be able to impose the restrictions
that o =0 and § = 1.
8. Use an F-test to see if these restrictions hold. Compare the significance
level of these two F-tests.

Calculate the mean squared prediction errors. Let T = 150.

1. Calculate a series of one-step-ahead prediction errors, {e};0) = {Y }00 —

.y 150
o
101

2. MSPE =1/50% {e*} 100

Calculate the root mean squared (prediction) error: RMSE = \/ 1/503" {e?}1on

Calculate the mean absolute error: MAFE =1/50" !{e}}gg
Maybe you are super risk averse and want to minimize the largest possible loss?

Model accuracy can differ at different horizons. Some models may be better
at longer horizons. Some may be better at shorter horizons. Thus, depending
on our end purpose, we may also want to compare the t-step-ahead prediction
values of different models.

Their are number of alternative tests including the Granger-Newbold test, the
Diebold-Mariano test and Thiel’s U-statistic. Consult a text on forecasting for
more info.
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