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1 Univariate Time Series Models

This section will address univariate time series modeling

Imagine we have the following, general univariate time series model

}/;f - f (}/t—la}/t—Qa "'>ut) :

To make this model operational we must specify three things;

1. the functional form of f (),
2. the number of lags,

3. and the structure of the disturbance term, ;.

Rationale for univariate analysis

1. Purely statistical (atheoretical) models can oftentimes be extremely useful
for summarizing information about a time series and for making reliable
short-term forecasts.

2. Look at the individual data series BEFORE running your regressions!
They may be able to tell you a lot.
(a) Seasonal patterns?
(b) Long-run trends?

(c) Structural breaks and/or unusual historical events?
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3. Theoretical models with lagged dependent variables can many time be
reduced to meaningful univariate time series models.

Example: A simple macroeconomic model

¢t = Bo+ By + Pocio1 + & (1)
Y = ¢+ (2)
'it = SYt (3)

where 0 < s < 1 is a constant saving rate, #; is investment, ¢; is consumption,
y; is income and ; ~ N(0,02). Some algebra gives us

¢t = Po+ Brys+ Baci1 + & (4)
Yy = Ct+ SYs. (5)

Substituting y; from Equation 5 into Equation 4 gives us

51615

c = ﬁo + : + 52615,1 + & —
ﬁlCt 51
Ct_l—s = 1_1—8 Ct:60+ﬁgct71+5t:>
Ct = Qo+ Q1+ Uy

where u; ~ N(0,02). Thus, the macro model reduces to a univariate, AR(1)
process for consumption.

4. Time series models are important for theoretical, analytical and numerical simu-
lation methods. Not just for econometrics.

1.1 Some Basic Concepts

Stochastic Process A stochastic process is a collection of random variables ordered
in time.

e Let annual US GDP from 1960 to 2002 = {V;}o0e = {Yios0, Yio61; ---> Ya002} -
Each Y; is a random variable (i.e., a single realization drawn from an infinite
number of alternative realities). The stochastic process {Yt}fggg helps us to
describe and draw inferences concerning the development of the US GDP over
time.

Strict Stationarity implies that the joint probability distribution of a stochastic
variable is invariant over time.



Weak Stationarity implies that the first two moments of the joint probability dis-
tribution of a stochastic variable (i.e., the mean and variance-covariance matrix)
are invariant over time, that is

E{Y} =p<oo

VA{Yi} = E{(Y; — )"} =70 < 00
COU{Y;faY;f—k} = E{(}/t - :u)(}/t—k - :u)} = Tk k= 1>2>3

e When are weak- and strict stationarity equivalent?

e For now, we need only be concerned with the concept of weak stationarity
(henceforth stationarity). It suffices for most all of our needs (i.e., it allows us
to proceed with our standard estimation, prediction and inference tools intact).

Nonstationary Process A nonstationary process will have a time-varying mean
and/or a time-varying variance. This prevents us from making inferences out-
side of the sample period.

Purely Random Process A stochastic process which has a zero mean, constant
variance, and is serially uncorrelated is called a purely random process, or,
"white noise". We will quite frequently assume that the shocks in our econo-
metric models are purely random processes (and then test whether this is a
good approximate or not), i.e., we will assume

g, ~ 11D(0,0?).

Variable X is Stationary and Variable C' is Nonstationary.



e Question: What type of economic variables look like X7 What type of economic
variables look like C'?

e Question: In theory, what type of economic variables should look like X and
what type of variables should look like C7

1.2 Moving Average Processes

e An MA(1) Process
Yi=p+e +ag

g, ~ 11D(0,0%).
e (Calculate the mean of Y,

E{Y,} = E{p+e+as_1}
E{u}+ E{e} + E{aci 1}
= p

e (Calculate the variance of Y;

Vit = B{(Yi—w?}

E{(e:+ aet_1)2}

E{e} + 2age, 1 + a’e]_ |}

E{e}} 4+ 20E {eei1} + °E {e]_,}
= E{e}+’E{e,}

= (1+a%)0o%

e (Calculate the autocovariance between Y; and Y;_;

co{Yy, i} = E{(Yi—p)(Yie1 —p)}
= E{(es 4+ aeg1) (er-1 + agi9)}
= aF {5?_1}

= 060'2.

e (Calculate the autocovariance between Y; and Y;_»

co{Yy, Yio} = E{(Y:—p)(Yi2 —p)}
= FE{(et+ag_1) (g2 + agi_3)}
= 0.

In general, cov{Y;,Y;_x} =0 for k =2,3,4, ...
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e What does the variance-covariance matrix X look like?

3.59061 -

-3.32396 -

An MA(1) Process With a = 0.90.

e If || < 1, then we can transform (invert) the M A(1) process into and AR (o)
process (more on this below).

e An example of a M A(q) process
Yi=p+e+aig 1+ ...+ agEy
g, ~ 11D(0,0?).

e The invertabity condition for general MA(q) processes is that the inverted roots
of the lag polynomial lie inside the unit circle.

1.3 Autoregressive Processes

e An example of an AR(1) process
Yi=p+0Y1+e

g, ~ 11D(0,0?).



e (Calculate the mean of Y,

E{Y,} = E{u+0Y,_1+¢e}
= pu+ E{0Y, 1} + E{e}
= pu+0E{Y,.1}+ E{e}
= pu+0E(u+0Y,o+ei1)
= pu+0u+0PE{Y; 2} +0E {1}
= u+0u+0*E(u+0Yi_3+e_s)

= etee. = p (14040 + .. +0°) =L

1-46

if |6] < 1.

e The rule pertaining to the sum of a geometric series will be used a lot in this
course.

Geometric Series Theorem: If |r| < 1, the geometric series a + ar + ar® + ... +
ar™ '+ ... converges to a/(1—7) asn — oo. If |r| > 1, the series diverges unless
a = 0. If a = 0, the series converges to 0.

e Calculate the variance of Y;. First, define y, = Y; — . Then, calculate v {y,}

Vgt = E{(u—E{u})’} = E{(Oy—1 +)*}
= F {Ef} + 0’E {%271} =02+ 0’E {yfﬁl}
= 0'2 + 92E{(9yt,2 + 81/71)2} = etc...

0.2

= 1+ +0"+ ... +0%) = o<1

e (Calculate the autocovariance between Y; and Y;_;

coo{Y,Yir} = E{(Y: — p)(Yier — )}
= E{(p+0Yio1 e — 1) (Yier — p)}
= E{(0Yi1 +e) (Vi — )}
= E{0V2, — pbYiq + &Yy — per}
= B{0Y?, - Vi) = 0E (Y2, — i)
= OE{(n+0Yio+e1)(p+0Y,o+e1)—pulp+0Yio+e1)}
OE {12 4 2u0Y;_o + 2ue,_1 + 0°Y,2 5 +20Y;_ge, 1+
e = — Y y — g}
= OE {0 o+ per1 + 025 +20Y, 050y + 7}
OF {pbY;—o + 0°Y , + ] 1} = P E{0Y2, + nY;_s} + 00
=+t =0CE{0Y?;+ pYi s} +6%°0° + 00°
= 4.+ =0%"+ .. + 0%+ 007

= 00 (1+0+6*+...+60%) =0

0.2

1—6°

if 0] < 1.



e In general, the autocovariance between Y; and Y}, can be written as

2
co{Y,, Y;} = eis—t‘ﬁ if 0] < 1.

——o—ar00 —+#—ar98

6.5516

-5.85749

time

An AR(1) Process With 6 = 0.98 vs. White Noise.

e The stationarity condition for an AR(1) process is |#| < 1. The import case of
when 6 = 1 will be addressed shortly.

e An example of an AR(p) process
Yi=p+0Y 14+ ..0,Yp+e
e, ~ I1D(0, 0?).

e The stationarity condition for general AR(p) processes is that the inverted roots
of the lag polynomial lie inside the unit circle.

e A stationary AR(1) process can also be written as an M A(co) process. This
can be readily shown if we make use of the lag operator, L.

1.3.1 The Lag Operator, L
e See pages 38-41 in Enders.

e Some basic rules for using lag operators:



(1—-L)xy =2 — L(xy) = 2y — 141 = Amy
L (]_ — L) Ty = (]_ — L)Zlft_l = T¢—1 — L.flft_l = Tt—1 — Tt—2 = Al't_l

1. La=«o

2. L(zy) = x4

3. L*(xy) = L[L(xy)] = L(wy—1) = 49
4. L*(zy) = x4

o.

6.

e Now, let’s use these rules to show that an AR(1) process can be written as an
M A(o0) process (and vice versa). First, write down an AR(1) process

T = Q1 + &

where |a| < 1. Using rule #1 and #2 —

ry = alr;+e —
v, —aly, = ¢ =
(1—al)x; = &=
€t
T A —al)

The last step is only possible when (1 — «L) is invertible. It is here, since we
are dealing with a stationary AR(1) process with |o| < 1. Now recall that the
sum of the infinite geometric series > .- a®L* is equal to (1+, which allows

al)
us to re-write the above equation as

o0

Ty = E o’L’e,.
s=0

Using rule #4
o0
S

Ty = E QEp_g.

s=0

which, of course, is an MA(co) process, x; = &; + ag;_1 + a’c;_5 + ...R makes
use of this fact in order to estimate models with M A(q) components.

1.3.2 The Random Walk Model (Without Drift)

e let us now take the AR(1) model from above and set § = 1 and g = 0. This
results in the well known random walk model

Yi=Yi1+¢

e, ~ 11D(0,0?).



e [s this process stationary? No. Why not?

FE {YT} = F {YT,1 -+ 5T} = {YT,Q + e+ ET}
= =E{p+¥la)l =Y,

The mean is a finite constant. The variance, however, is not

V{Vi} = E{(Y; - E{Yi})’} = E{([Yim1 + ] - Y0)*} =
= B{([(Yia+ei1) +e — Y0)*}
= E{([([Yi-3 + et—2] +€1-1) + &) — YO)2}
= fot=(E{0}+ S E{a} - Yo)?
= Yo+ S{E{e} — o) = (STE {e})?
= SJE{} =To"

e Note the persistence of the shocks, ¢;, in this random walk model. The random
walk model is said to have infinite memory.

Unit Root Setting § = 1 gives rise to the unit root problem. A unit root is syn-
onymous with nonstationarity. The name unit root is due to the fact that the
solution to the characteristic equation of an AR(1) process has one root equal
to unity when 6 = 1.

Difference Stationary Process The random walk model can be made stationary
by differencing the time series Y;

Y=Y, = Vi1 —Yii+te—
AK = &t

We will make use of this fact quite often in this course. Processes which can be
made stationary by differencing are called difference stationary processes.

Integrated Stochastic Process A stochastic process which can be made station-
ary through differencing is also known as an integrated stochastic process. If a
stochastic process can be made stationary by taking first differences, it is said to
be integrated of order one, I(1). If a stochastic process can be made stationary
by taking d differences, it is said to be integrated of order d, I(d). Processes
which are already stationary are said to be integrated of order zero, I(0).

1.3.3 The Random Walk Model With Drift

e let us now take the AR(1) model from above and, once again, set § = 1. This

time, however, we will allow p # 0. This results in a random walk model with
drift



Y, = p+Yia+eg
g, ~ IID(0,0%).
Stochastic Trend Y, will tend to drift upwards or downwards, depending on the
sign of the drift parameter, p. This drift is called a stochastic trend.
e Neither the mean nor the variance are constant
E{Yr} = p+Yri+er

= U+N+YT—2+5T71+€T
= =Y+ S0 u+3ge
= E{Yo+S{p+X{e} =Y+ Tu

v{vi} = B{(Y,— E{vr})*} = B{(Y; - E{Yo+ Sop+ Tge})’}
= B{(Y, = Yo~ Tp+E{Sge})(Y = Yo — Tu+ E{Zge 1)}
= E{S{e} =S(E{c} =To"
e The random walk model with drift can also be made stationary by differencing
the time series Y;
Yi-Yi1 = p+Yia Y1 t+e —
AY, = p+e

where ¢, ~ I1D(0,0?).

—o— W —a— rw_drift

-5.84454

T T
1 100
time

Random Walk vs. Random Walk With Drift.
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1.3.4 Trend Stationary Processes

e Now let us add a time trend, ¢, to an otherwise stationary AR(1) process
Y;‘/ :,Uz+t+¢9Y;71+€t
g, ~ IID(0,0%).

e This is a nonstationary process with mean

pAt
E{Y,} = ——
vy =12
and variance
o2
V{Yi} = T

Trend Stationary Processs This model can be made stationary by removing, or,
subtracting the deterministic time trend from the original time series.! Processes
which can be made stationary by removing a deterministic trend are called trend
stationary processes (TSP).

'H-P trends and quadratic, cubic, etc. trends are also deterministic even though they are not
linear.
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