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Econometrics 2b: Handout #6

Matthew J. Lindquist*
April 2009

Tests for Stationarity

The Dickey-Fuller Test
Model Y; as an AR(1) process

Y, =0Y, 1 +¢

e, ~ 11D(0,0?).

If |#| < 1, then the process is stationary. If |#| > 1, then the process explodes.
If |#| = 1, then the process exhibits a unit root and the process is nonstationary.

The unit root test examines whether or not § = 1.
In practice, we first make the following transformation

Yi-Y1 = Y1 -Y, 14+ —
AY, = (0-1)Y,1+¢
= Y1 +é&

and then test whether or not m = 0.

If # =0, then § = 1 and Y; has a unit root.
H,:7m=0

Hi:n < 0.

Under H, the t-value of the estimated coefficient of Y;_; does NOT follow the
standard t-distribution. You must compare them with the DF-test statistics like
those reported in Table A on p. 439 in Enders (2004) [look at the 7-statistic].
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Example 1 Determining the order of integration - the DF-test.

step 1: Graph the time series, y: plot.ts(y)
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Does this time series look stationary?
step 2: Implement the DF-test in R by writing:

dfuller.reg <— lm(diff(y) ~ lag(y,-1)[1:99] -1)

summary (dfuller.reg)

Examine the regression summary. The ¢-statistic associated with the coefficient
in front of the lagged value of y is equal to -0.997. Compare this to the appropriate
(non-standard) critical values from Table A in Enders (2004). The 1% and 5% critical
values of 7 (the t-statistic in a regression with no constant and no deterministic trend)
for a sample size = 100 are -2.60 and -1.95, respectively. Since the t-value from the
regression is greater than both of these critical values (i.e., closer to zero), we can
not reject that m = 0 and that there is a unit root present in this series.

Conclusion: Do NOT reject y is 1(1).
step 3: Examine whether y is I(1) or I(2).

step 4: Graph the time series Ay: plot.ts(diff(y))
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Time

Does this series look stationary? What is our definition of stationarity? What
should I be looking for?

step 5: Implement the DF-test in R by writing:

dfuller.reg <— lm(diff(y,1,2) ~ lag(diff(y),-1)[1:98] -1)

summary (dfuller.reg)

Examine the regression summary. The ¢-statistic associated with the coefficient
in front of the lagged value of y is equal to -11.48. Compare this to the appropriate
(non-standard) critical values from Table A in Enders (2004). The 1% and 5% critical
values of ¢*. (the t-statistic in a regression with no constant and no deterministic
trend) for a sample size = 100 are -2.60 and -1.95, respectively. Since the ¢-value
from the regression is less than both of these critical values, we can reject the
hypothesis that 7 = 0 and that there is a unit root present in this series.

Conclusion: z is I(1).

Note: The time series was, in fact, a random walk. It was simulated in R by writing:
y <- arima.sim(list(order=c(0,1,0)), n=100)

e Different models have different 7 distributions. These values are also reported
in Table A in Enders (2004).

AY, =0Y, 1 + &
AY,=a+6Y, 1 +¢
AY;:O(—Fﬁt‘i‘(SY;fl‘i‘Et

e Note that under Hy the distribution of the F-test statistic also changes. So, to
test the hypothesis that « = 0 = 3 (in the equation above) we have to use the

critical ¢-values calculated by Dickey and Fuller. These values can be found in
Table B in Enders (2004).



Example 2 Testing Annual US GDP for a Unit Root

step 1: Graph US GDP. Does the series look stationary?
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Annual US GDP, 1963-1992.

step 2: Implement the DF-test with no constant and no trend:

dfuller.reg <— Im(diff(output) ~ lag(output,-1)[1:29] -1)

summary (dfuller.reg)

The t-statistic on lagged output is 6.91. The critical value, 7, from Enders’ Table
Ais-1.95 (5%, n = 25). Since t > 7, we can not reject Hy : m = 0. We can, therefore,
not reject the presence of a unit root in annual US GDP.

step 3: Implement the DF-test with a constant, but no trend:

dfuller.reg <— Im(diff(output) ~ lag(output,-1)[1:29])

summary (dfuller.reg)

The t-statistic on lagged output is 0.391. The critical value, 7,, from Enders’
Table A is -3.00 (5%, n = 25). Since t > 7,,, we can not reject Hy : m = 0. We can,
therefore, not reject the presence of a unit root in annual US GDP.

step 4: Implement the DF-test with a constant and a trend:

dfuller.reg <— Im(diff(output) ~ lag(output,-1)[1:29] 4+ Year[1:29])

summary (dfuller.reg)

The t-statistic on lagged output is -1.674. The critical value, 7., from Enders’
Table A is -3.60 (5%, n = 25). Since t > 7,, we can not reject Hy : 7 = 0. We can,
therefore, not reject the presence of a unit root in annual US GDP.



Conclusion: All three tests tell us that US GDP has at least one unit root.
step 5: Test if GDP is 1(2).

step 6: Graph AGDP. Does this series look stationary?
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step 7: Implement the DF-test on AGDP with no constant and no trend:

dfuller.reg <— Im(diff(diff(output)) ~ lag(diff(output),-1)[1:28] -1)

summary (dfuller.reg)

The t-statistic on lagged AGDP is -2.082. The critical value, 7, from Enders’
Table A is -1.95 (5%, n = 25). Since t < 7, we can reject Hy : # = 0. We can,
therefore, reject the presence of a unit root in annual AGDP.

step 8: Implement the DF-test on AGDP with a constant, but no trend:

dfuller.reg <— Im(diff(diff(output)) = lag(diff(output),-1)[1:28])

summary (dfuller.reg)

The t-statistic on lagged AGDP is -4.223. The critical value, 7, from Enders’
Table A is -3.00 (5%, n = 25). Since t < 7,, we can reject Hy : m = 0. We can,
therefore, reject the presence of a unit root in AGDP.

step 9: Implement the DF-test on AGDP with a constant and a trend:

dfuller.reg <- Im(diff(diff(output)) ~ lag(diff(output),-1)[1:28] 4+ Year[1:28])

summary (dfuller.reg)

The t-statistic on lagged AGDP is -4.206. The critical value, 7., from Enders
Table A is -3.60 (5%, n = 25). Since t < 7,, we not reject Hy : 7 = 0. We can,
therefore, reject the presence of a unit root in AGDP.

Conclusion: All three tests reject the presence of a unit root (at the 5% level) in
AGDP. Thus, we can conclude that annual US GDP is I(1).
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1.3

The Augmented Dickey-Fuller (ADF) Test

The DF-test we assumeS that ¢, and ¢, are uncorrelated for all k.

You can check the correlogram (using the acf and/or pacf functions in R) of
the residuals from the DF regression to see if this holds or not.

If this does not hold, we can augment the DF-test by adding additional lagged
differences to the test equation. Fortunately, this does not change the distri-
bution of the test statistic. So, we can continue using the same table for the
DF-test statistics as before

AY, = o+ Bt + 0Y,_y + 7,5 AY + &

How does one choose the appropriate lag length m? The main goal is to elimi-
nate autocorrelations in the regression residuals.

1. Start with a general model (i.e., start with too many lags) and then reduce
it through a series of F- and/or t-tests.

2. Alternatively, one could start by adding lags until the newly added lag is
insignificant. The risk with this method is that significant lags can come
afterwards, especially if the data has a periodicity less than one year.

(a) Or, just add lags until their is no autocorrelation!
3. AIC
4. BIC

5. Regardless of the method you use, you have to check the regression resid-
uals for autocorrelation!

My preferred method is to have as few lags as is necessary to eliminate autocor-
relation in the residuals. Why? increasing the number of lags lowers the power
of the test. Keep in mind, however, that with quarterly data (for example) you
have to look at 4 lags, 8 lags, etc...not just lags 1, 2, 3, etc.

In practice, I always do both. I wouldn’t want to publish a paper with results
that were overly sensitive to the number of lags included or excluded from this
test.

The Power of the DF Unit Root Test

Type II Error: A type ll error is that the null hypothesis is not rejected when the

alternative is true.
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When the "truth" deviates a lot from the null hypothesis (e.g., if, in an AR(1)
process, # = 0.01, while our Hy is 6 = 1) the probability of making a type 1l
error is small.

Conversely, when the "truth" deviates only slightly from the null hypothesis
(e.g. if, in an AR(1) process, # = 0.98, while our Hy is § = 1) the probability
of making a type Il error is large.

Power of a Test: the power of a test is equal to 1 - the probability of making
a type 1l error, i.e. the probability of rejecting the null hypothesis when it is,
indeed, false.!

The power of our DF and ADF tests is small in many important cases, due to
the high level of persistency and/or trends in macroeconomic variables.

The result is that we tend to "over accept" the existence of a unit root.

The Phillips-Perron Test

In the DF-test we assume that ¢; and ¢,_;, are uncorrelated for all k.

The ADF-test dealt with this potential problem by added lagged values of
the dependent variable to the left hand side of our regression, i.e., we added
Vit AY .

The PP-test deals with this potential problem using nonparametric statistical
methods which takes care of serial correlation without added lagged differences.

The PP.test in R uses the Newey-West estimator of the variance-covariance
matrix.

The PP.test in R estimates the DF style equation with a constant and a time
trend.

The PP.test in R maintains Hy : # = 1, while the alternative is H; : 0 < 1.

Example 3 Simulate a random walk process and use the PP-test for a unit root:

x<-arima.sim(list (order=c(0,1,0)),n=200)

PP.test(x)

This delivers the following results:

data: x

Dickey-Fuller = -2.2946

Truncation lag parameter = J

p-value = 0.4527

A p-value greater than 0.10 means we can not reject Hy : 0 = 1.

IThe "size" of a test is the percentage of times we falsely reject the null hypothesis.
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Example 4 Simulate a white noise process and use the PP-test for a unit root:

x<-rnorm(200)

PP.test(x)

This delivers the following results:

data: x

Dickey-Fuller = -31.37

Truncation lag parameter = 7

p-value = 0.01

Thus, we can reject the unit root hypothesis at the 1% level.

e IMPORTANT! A super helpful tip! Due to the low power of our unit root
tests. A clear rejection by the PP.test means that you can conclude that the
series has no unit root and you don’t have to do any more testing.

1.5 Sequential Unit Root Test

The sequential method of testing for unit roots outlined in Enders (2004) and in Pfaff
(2006) is the method we will use to organize our search for unit roots. It is essential
that you follow a specified methodology if you are to avoid data mining.
See pp. 213-214 in Enders (2004) Applied Econometric Time Series (2nd edition).
See pp. 21-29 and 55-58 in Pfaff (2006).

Example 5 Test Gujarati’s (2003) PDI (personal disposable income) series for a
unit root:

step 1: Run DF regression on the full model.
trend <-1:87
df<-lm(diff(PDI) "PDI[1:87]+trend)
t-stat = -2.588
7, =-3.45 (5%, n=100)
Conclusion: We cannot reject Hy: m = 0 (we cannot reject a unit root).

step la: Check the residuals for autocorrelation.

acf(residuals(df), ci.type="ma")
Conclusion: no autocorrelation.

step 2: F-test for trend = m = 0.



dfl <-lm(diff(PDI)"1)

anova(dfl,df)

Analysis of Variance Table

Model 1: diff(PDI) "1

Model 2: diff(PDI) “PDI[1:87] + trend

Res.Df RSS Df Sum of Sq F Pr(>F)

186 67080

2 84 61998 2 5081 3.4422 0.03657 *

Signif. codes: 0 “***7 0.001 “** 0.01 “*’ 0.05 *.” 0.1 " 1
F-statistic = 3.44

¢4-statistic = 6.49 (5%, n=100)

F < ¢4 — Conclusion: We cannot reject that trend = m = 0.

step 3: Run DF regression on the model without the trend.

df2<-lm(diff(PDI) "PDI[1:87])

t-stat = -0.672

7, = —2.89 (5%, n=100)

Conclusion: We cannot reject 7 = 0 (i.e., a unit root).

step 3a: Check the residuals for autocorrelation.

acf(residuals(df2), ci.type="ma")
Conclusion: no autocorrelation.

step 3b: F-test for intercept =7 =0

RSS, — RSS.) /q

_
F= RSS, /(T — k)

where T' = the number of observations, k& the number of independent variables
estimated (including the intercept), and ¢ is the number of restrictions tested.

RSSu<-sum(residuals(df2)~2)
RSSr<-sum(diff(PDI)~2)

q<-2

T=length(diff(PDI))

k<-3
F=((RSSr-RSSu)/q)/(RSSu/(T-k))
F

F=17.76

Step 3c: Re-do the F'-test using the anova command.



df2<-lm(diff(PDI) "PDI[1:87])

df3<-lm(diff(PDI)™-1)

anova(df3,df2)

F=17.971

¢, = 4.71 (5%, n=100)

Conclusion: We can reject the hypothesis that intercept = m = 0.

step 3d: Use standard t-statistic to test whether or not # = 0. WHY!?

t-statistic = -0.672
Conclusion: We cannot reject m = 0.

Conclusion: PDI is a random walk with drift.

2 Testing for Unit Roots in the Presence of Struc-
tural Breaks

e Structural breaks (in otherwise stationary series) introduce bias in standard
unit root towards accepting the unit root hypothesis. Why?

e Pfaff (2006, pp. 73-78) demonstrates the implementation of the Zivot-Andrews
unit root test in R. The name of the test is ur.za(). It can be found in a
package named urca along with a large number of other unit root tests.

e Enders (2004, pp. 200-207) discusses the problem of structural change and
discusses Perron’s (1989) test for unit roots in the presence of structural breaks.

We will return to the topic of structural breaks in a later lecture.

3 Seasonal Unit Roots

e A seasonal quarterly process has four possible roots; "1", "-1", "+4¢" and "—z".

— "1" corresponds to the unit root, which can be removed by first differenc-
ing.

— "-1" implies a two-period (biannual) cycle.

— "+4" produce seasonal unit roots, which can be removed by taking fourth
differences.

Example 6 What would a stochastic seasonal trend look like?
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e Graph Quarterly Swedish GDP. Does the series look stationary? Does this series
look like it has a seasonal component? Is this seasonal component deterministic
or stochastic?
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e Assuming that this series is 7(1), we can take first differences to make it station-
ary. This gives us the following graph. Does this series have a constant mean
and/or a constant variance? If so, the seasonal component is deterministic. If
not, it is stochastic.
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e Alternatively, we could remove a deterministic seasonal component by using the
variable dummy method. This results in a nonstationary, seasonally detrended
series for Swedish GDP. What do the first differences of this series look like?
Is the mean and/or variance of this series constant? If so, then it was correct
to remove a deterministic seasonal component. If not, then we haven’t dealt
correctly with the seasonal component.
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e Let us now perform a formal test for the presence of a stochastic seasonal
component.

3.1 Hyllberg, Engel, Granger & Yoo (HEGY) Test
e The description of this test follows Pfaff (2006, p. 82)

e The HEGY test regression for quarterly data is
Ay = Elemyi,t—l + &t
where the regressors Y;;_; for i = 1,...,4 are constructed as

YLt = Y+t Y1+ Y2+ Y3
Yo = vty — Y2t yis
Ys; = —yi+tyo2

Y47t = YELt—l = —Yt-1 + Yr—3.

Then we test for 71y = 0, 7o = 0 and 73 = 74 = 0.

e The test regression can be generalized to include deterministic components such
as an intercept, trend, seasonal dummy variables, as well as lagged seasonal
differences.

e The HEGY-test can be performed in R using the HEGY .test function in the
uroot package.
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